
Dimensionality Reduction 

Dimensionality reduction, or dimension reduction, is the transformation of data from 

a high-dimensional space into a low-dimensional space so that the low-dimensional 

representation retains some meaningful properties of the original data, ideally close 

to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for 

many reasons; raw data are often sparse as a consequence of the curse of 

dimensionality, and analyzing the data is usually computationally intractable (hard to 

control or deal with). Dimensionality reduction is common in fields that deal with 

large numbers of observations and/or large numbers of variables, such as signal 

processing, speech recognition, neuroinformatics, and bioinformatics.  

Methods are commonly divided into linear and nonlinear approaches. Approaches 

can also be divided into feature selection and feature extraction. Dimensionality 

reduction can be used for noise reduction, data visualization, cluster analysis, or as 

an intermediate step to facilitate other analyses. 

 

A gentle introduction to dimensionality reduction for machine learning 

 Large numbers of input features can cause poor performance for machine 

learning algorithms. 

 Dimensionality reduction is a general field of study concerned with reducing 

the number of input features. 

 Dimensionality reduction methods include feature selection, linear algebra 

methods, projection methods, and autoencoders. 

There are two types of Dimensionality Reduction techniques: 

1. Feature Selection 

2. Feature Extraction 

 

Feature Selection techniques are Backward Elimination, Forward Selection, 

Bidirectional Elimination, Score Comparison and more.  

The following Feature Extraction techniques: 

1. Principal Component Analysis (PCA) 

2. Linear Discriminant Analysis (LDA) 

3. Kernel PCA 
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Principal component analysis (PCA) 

The main linear technique for dimensionality reduction, principal component 

analysis, performs a linear mapping of the data to a lower-dimensional space in such 

a way that the variance of the data in the low-dimensional representation is 

maximized. 

Principal component analysis (PCA) is a linear dimensionality reduction technique 

with applications in exploratory data analysis, visualization and data preprocessing. 

The data is linearly transformed onto a new coordinate system such that the 

directions (principal components) capturing the largest variation in the data can be 

easily identified. 

The principal components of a collection of points in a real coordinate space are a 

sequence of p unit vectors, where the i-th vector is the direction of a line that best fits 

the data while being orthogonal to the first i-1 vectors. Here, a best-fitting line is 

defined as one that minimizes the average squared perpendicular distance from the 

points to the line. These directions (i.e., principal components) constitute 

an orthonormal basis in which different individual dimensions of the data are linearly 

uncorrelated. Many studies use the first two principal components in order to plot the 

data in two dimensions and to visually identify clusters of closely related data points.  

Principal component analysis has applications in many fields such as population 

genetics, microbiome studies, and atmospheric science. 

 

 

 

A visual depiction of the resulting PCA projection for a set of 2D points. 
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Actual Dataset 

 

Final Result use PCA 

  



Linear Discriminant Analysis (LDA) 

Linear Discriminant analysis is one of the most popular dimensionality reduction 

techniques used for supervised classification problems in machine learning. It is also 

considered a pre-processing step for modeling differences in ML and applications of 

pattern classification. 

LDA assumes that the data has a Gaussian distribution and that 

the covariance matrices of the different classes are equal. It also assumes that the 

data is linearly separable, meaning that a linear decision boundary can accurately 

classify the different classes. 

Suppose we have two sets of data points belonging to two different classes that we 

want to classify. As shown in the given 2D graph, when the data points are plotted on 

the 2D plane, there’s no straight line that can separate the two classes of data points 

completely. Hence, in this case, LDA (Linear Discriminant Analysis) is used which 

reduces the 2D graph into a 1D graph in order to maximize the separability between 

the two classes.  

  

 

Linearly Separable Dataset 

 

Here, Linear Discriminant Analysis uses both axes (X and Y) to create a new axis 

and projects data onto a new axis in a way to maximize the separation of the two 

categories and hence, reduces the 2D graph into a 1D graph.  
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Two criteria are used by LDA to create a new axis:  

1. Maximize the distance between the means of the two classes. 

2. Minimize the variation within each class. 

 

  

 

The perpendicular distance between the line and points 

 

In the above graph, it can be seen that a new axis (in red) is generated and plotted in 

the 2D graph such that it maximizes the distance between the means of the two 

classes and minimizes the variation within each class. In simple terms, this newly 

generated axis increases the separation between the data points of the two classes. 

After generating this new axis using the above-mentioned criteria, all the data points 

of the classes are plotted on this new axis and are shown in the figure given below.  

  

 

  

 

But Linear Discriminant Analysis fails when the mean of the distributions are shared, 



as it becomes impossible for LDA to find a new axis that makes both classes linearly 

separable. In such cases, we use non-linear discriminant analysis. 

 

  



Kernel Principal Component Analysis (KPCA) 

Kernel Principal Component Analysis (KPCA) is a technique used in machine 

learning for nonlinear dimensionality reduction. It is an extension of the classical 

Principal Component Analysis (PCA) algorithm, which is a linear method that 

identifies the most significant features or components of a dataset. KPCA applies a 

nonlinear mapping function to the data before applying PCA, allowing it to capture 

more complex and nonlinear relationships between the data points. 

In KPCA, a kernel function is used to map the input data to a high-dimensional 

feature space, where the nonlinear relationships between the data points can be 

more easily captured by linear methods such as PCA. The principal components of 

the transformed data are then computed, which can be used for tasks such as data 

visualization, clustering, or classification. 

 

Kernel PCA 
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Kernel PCA is an extension of PCA that allows for the separability of nonlinear data 

by making use of kernels. The basic idea behind it is to project the linearly 

inseparable data onto a higher dimensional space where it becomes linearly 

separable. 

Kernel PCA can be summarized as a 4 step process: 
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